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Abstract – In a (grand)daughter design, maternal information is often neglected because the
number of progeny per dam is limited. The number of dams per maternal grandsire (MGS),
however, could be large enough to contribute to QTL detection. But dams and MGS usually are
not genotyped, there are two recombination opportunities between the MGS and the progeny,
and at a given location, only half the progeny receive a MGS chromosomal segment. A 3-step
procedure was developed to estimate: (1) the marker phenotypes probabilities of the MGS;
(2) the probability of each possible MGS haplotype; (3) the probabilities that the progeny
receives either the first, or second MGS segment, or a maternal grandam segment. These
probabilities were used for QTL detection in a linear model including the effects of sire, MGS,
paternal QTL, MGS QTL and maternal grandam QTL. Including the grandam QTL effect makes
it possible to detect QTL in the grandam population, even when MGS are not informative. The
detection power, studied by simulation, was rather high, provided that MGS family size was
greater than 50. Using maternal information in the French dairy cattle granddaughter design
made it possible to detect 23 additional QTL genomewise significant.

QTL detection / daughter design / granddaughter design / dairy cattle

1. INTRODUCTION

In laboratory animals and in plant, the most efficient QTL detection designs
involve crosses (F2, back cross, recombinant lines, advanced intercross...) of
inbred lines. Because parental lines are completely homozygous, the design is
equivalent to one large family, whatever the number of reproducing animals. In
most domestic animal species, however, no completely inbred line is available
and QTL detection should be carried out within-family. Under these conditions,
a key factor for detection power is the number of progeny per parent. In some
species, as in cattle, female prolificacy is low and large dam families are
very difficult to obtain, even with artificial reproduction tools. Consequently,
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only sire families efficiently contribute to QTL detection, in the so-called
daughter [7] or granddaughter design [9]. In these designs, maternal meioses,
i.e. half the total number of meioses, are not used and this strongly affects their
detection power. Consequently, these designs are typically 4 to 10 times larger
than those involving inbred lines.

Due to the high cost of these designs, strategies should be developed to
extract more information from the data. When dams are not or very little related,
maternal information could be used in association analysis, by taking advantage
of the linkage disequilibrium likely to be present in domestic populations due
to recent bottlenecks and founder effects. This approach, however, requires
dense maps and therefore additional genotyping work.

In other situations, dams are more related and are born from a limited
number of maternal grandsires (MGS). Coppieters et al. [4] showed that this
family structure could be used for QTL detection when MGS phenotypes and
phases are known, even when dams are not genotyped. This situation typically
occurs when MGS are also sires. Bink and Van Arendonk [1] proposed a
Monte Carlo Markov Chain approach to use information of non genotyped
individuals, and particularly information from the dams. The present paper
proposes a deterministic methodology suited to the situation where dams and
MGS are not genotyped for the markers and when MGS phases are unknown.
It also presents a simulation study of the detection power which can be achieved
by this additional information. The method is illustrated with the analysis of
the granddaughter design (GDD) carried out in French dairy cattle.

2. METHODS

The method proposed involved the four following steps and this section is
divided accordingly: the estimation of the marker phenotypes of the MGS,
given the marker information of the grandprogeny and their sire; the estimation
of the marker phases of the MGS; the estimation of the QTL transmission
probabilities from the MGS to the grandprogeny; and QTL detection sensu
stricto by linear regression. When MGS are already genotyped, step 1 could be
skipped. And when MGS phases are already known (e.g. when MGS appear
also as sires in the design), step 2 could also be skipped.

Conceptually, steps 1 and 2 could be carried out simultaneously, but the
number of possible phases for one MGS with m markers and with ni possible

alleles per marker reaches 1
2

∏m
i=1 n2

i

[(∏m
j=1 n2

j

)
+ 1

]
and is usually too high

(for instance 4× 107 for m = n = 5) for a direct search.
As this analysis is supposed to be a by-product of a daughter or granddaughter

design and of a within-sire analysis, we first summarise the most important
concepts of this classical model to introduce some notations.
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2.1. Within-sire QTL detection

The probability p(hsi|Mi) of each possible phase hsi of each sire i, condi-
tional on marker information, is determined, assuming linkage equilibrium in
the population (i.e. equal prior probability of each phase) and that dams are
unrelated, as follows [5]:

pr (hsi/Mi) =

∏

j

pr
(
mpij/hsi

)

∑

hsi

∏

j

pr
(
mpij/hsi

) (1)

where Mi denotes the whole marker phenotype information of the sire and
their progeny, and mpij denotes the marker phenotype information of pro-
geny j. pr(mpij/hsi) is obtained as follows. Let γ l

ij be a variable indicating
the grandparental origin of marker l transmitted by sire i to his progeny j.
γl

ij is equal to 0, 1, or 2, when the origin is unknown or when the allele
originates from the paternal grandsire or grandam, respectively. If only
the informative markers are considered (γ l

ij > 0), pr(mpij/hsi) is obtained
by: pr

(
mpij/hsi

) = 1
2

∏
l pr(γl

ij, γ
l+1
ij /hsi), where pr(γ l

ij, γ
l+1
ij /hsi) is equal to

1 − r(l, l + 1) if γ l
ij = γl+1

ij (no recombination) or r(l, l + 1) if γ l+1
ij 6= γl+1

ij
(recombination), and r(l,m) is the recombination rate between markers l and m.

Given the marker phase of sire i, the probability pr
(
dx

ij = q/hsi,Mi

)
that the

progeny received the paternal chromosomal segment at location x of origin q
(q = 1 or 2) is derived from the two nearest flanking informative markers ll

and lr, according to Table I.
The information content at location x could be measured by

Ix =

∑

i

∑

j

(
pr

(
dx

ij = 1/hsi,Mi

)− pr
(
dx

ij = 2/hsi,Mi

))2

∑

i

ni

(2)

where ni is the number of progeny of sire i.
In the simplest and most usual model, these transmission probabilities are

used in a within-family regression analysis, as follows:

yij = µi +
(

2pr
(
dx

ij = 1/hsi,Mi

)− 1
)αx

i

2
+ εx

ij (3)

where yij is the phenotype of progeny j, µi is the family mean, αx
i is the

within-sire substitution effect of the QTL at location x, and εx
ij is the residual.
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Table I. Probability of grandpaternal origin dx
ij of a chromosomal segment at location x,

given marker information Mi and sire haplotype hsi.

Situation pr
(

dx
ij = q/hsi,Mi

)

q = γ
ll
ij and γ

ll
ij = γ

lr
ij

(
1− r (ll, x)

)(
1− r (lr, x)

)

1− r (ll, lr)

q 6= γ
ll
ij and γ

ll
ij = γ

lr
ij

r (ll, x) r (lr, x)

1− r (ll, lr)

q = γ
ll
ij and γ

ll
ij 6= γ

lr
ij

(
1− r (ll, x)

)
r (lr, x)

r (ll, lr)

q = γ
lr
ij and γ

ll
ij 6= γ

lr
ij

r (ll, x)
(
1− r (lr, x)

)

r (ll, lr)

ll and lr are the left and right flanking markers of position x, respectively;
r(a, b) is the recombination rate between positions a and b; q = 1 or 2
when the paternal QTL allele originates from grandpaternal or grand-
maternal chromosomes, respectively; γk

ij = 1 or 2 when the paternal
allele for marker k originates from grandpaternal or grandmaternal
chromosomes, respectively.

2.2. Determination of the maternal chromosome transmitted
to the progeny

The paternal chromosome could be deducted by comparing the sire genotype
with the progeny phenotype marker by marker. There is some uncertainty,
however, when both sire and progeny have the same heterozygous marker phen-
otype. Therefore, the probability of each paternal chromosome pcijK possibly
transmitted to progeny j was determined by using the linkage information.

pr
(
pcijk

) =

∑

hsi

pr (hsi) ∗ pr
(
pcijk/hsi

)

∑

k

∑

hsi

pr (hsi) ∗ pr
(
pcijk/hsi

) (4)

where pcijk was the k-th possible chromosome of paternal origin transmit-
ted to progeny j by its sire i, pr(hsi) was already derived in equation (1),
pr

(
pcijk/hsi

) = 1
2

∏
l pr

(
γl

ij, γ
l+1
ij /hsi

)
and was computed as in 1.1. Note that

the possible uncertainty in the sire phase determination was accounted for in
this approach.

Once the paternal chromosome was determined (in probability), the maternal
chromosome was obtained by the complement of the paternal chromosome to
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the progeny phenotype. And of course, the probability of each possible mater-
nal chromosome was equal to the probability of the corresponding paternal
chromosome. In the following steps, two options are possible. In the simplest
implementation, the most likely maternal chromosome is supposed to be the
true one. Alternatively, all maternal chromosomes with a probability greater
than a given threshold (0.05 for instance) can be considered, and not only the
most likely. The latter option was used in the subsequent steps.

2.3. Estimation of MGS marker phenotypes

Each maternal allele transmitted to the progeny could originate from the
MGS or from the maternal grandam (MGD). MGD were assumed to be
unrelated to each other and unrelated with the MGS. Note that this assumption
is similar to that used for dams in the usual daughter design. For each locus L,
the likelihood was written as follows:

ΛL =
∏

i

ΛL
i

=
∏

i

∑

p

pr
(
mgsL

ip

) ni∏

j=1

∑

k

pr
(
pcijk

) 2∑

o=1

pr (o) ∗ pr
(
aL

ijk/o,mgsL
ip, f

)
(5)

where ΛL
i was the likelihood of MGS i and locus L, msgL

ip was the p-th possible
phenotype of MGS i at locus L, o represented the possible origins (1 = MGS,
2 = MGD) of the allele aL

ijk at locus L of the maternal chromosome received
by progeny j, and f was the vector of allele frequencies for locus L in the MGD
population. The domain of possible phenotypes for MGS i was determined by
the naiL(naiL+ 1)/2 possible pairs of the naiL alleles found in his descendants.
The a priori probability pr(msgL

ip) of each pair was supposed to be constant
and equal to 2/

(
naiL(naiL + 1)

)
. The MGS and MGD origins were supposed

to have the same probability, therefore pr(o = 1) = pr(o = 2) = 1/2. The
last term, pr

(
aL

ijk/o,mgsL
ip, f

)
, was obtained as presented in Table II.

The frequencies (f) were estimated by maximising the likelihood and the
probability of each possible MGS phenotype given the marker information was
obtained by

pr
(
mgsL

i /Mi

) =

ni∏

j=1

∑

k

pr
(
pcijk

) 2∑

o=1

pr (o) ∗ pr
(

aL
ijk/o,mgsL

i , f̂
)

∑

mgsi

ni∏

j=1

∑

k

pr
(
pcijk

) 2∑

o=1

pr (o) ∗ pr
(

aL
ijk/o,mgsL

i , f̂
) · (6)

Again, two options were possible in the following steps. In the simplest
implementation, the most likely MGS marker phenotype is supposed to be the
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Table II. Probability of the maternal allele aL
ijk of marker L received by progeny j,

given its grandparental origin o, the MGS phenotype mgsL
i = (mgsL,1

i ,mgsL,2
i ), and

allelic frequencies f in the MGD population.

Origin o Phenotype mgsL
i

of MGS i at locus L
Allele aL

ijk of chromosome k
of progeny j at locus L

pr
(

aL
ijk/o,mgsL

ip, f
)

MGS mgsL,1
i = mgsL,2

i
aL

ijk = mgsL,1
i

aL
ijk 6= mgsL,1

i

1

0

MGS mgsL,1
i 6= mgsL,2

i
aL

ijk = mgsL,1
i or aL

ijk = mgsL,2
i

aL
ijk 6= mgsL,1

i and aL
ijk 6= mgsL,2

i

1

2
0

MGD f
(

aL
ijk

)

true one. Alternatively, all MGS marker phenotypes with a probability greater
than a given threshold (0.05 for instance) can be considered, and not only the
most likely. The latter option was used in the estimation of MGS phases.

2.4. Probability of MGS phases

As the allelic frequencies in the MGD population were already estimated in
the preceding step, they were assumed to be known and the phase probabilities
were estimated within-family. If the chromosome is marked with L locus and
if MGS i has ntl

i possible phenotypes for locus l with a non-zero probability,
there are 2L−1

∏L
l=1 ntl

i possible phases.
The probability of a given phase (hgsi) of MGS i was proportional to

pr (mgsi/Mi)
1

2Lhi−1

∏

j

∑

k

pr
(
pcijk

) 4L∑

o=1

pr (o) pr
(
tijk/o, pcijk, hgsi, f

)
(7)

i.e. the product of the a priori probability of the phase with the likelihood of
the progeny.

If the maternal chromosomes transmitted to the progeny and the MGS marker
phenotypes were assumed to be known, this formula reduced to

1

2Lhi−1

∏

j

4L∑

o=1

pr (o) pr
(
tijk/o, pcijk, hgsi, f

)
.

Let us develop the different terms involved in (7). The a priori probability
of the phase was equal to the product of the a priori probability of the phase
given the phenotype for all locus of the chromosome with the probability of
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the phenotype pr(mgsi). Given the phenotype, all phases were considered
equally probable, with probability 1/2Lhi−1, where Lhi was the number of
heterozygous locus for MGS i. The probability of the phenotype at each locus
was obtained independently of the other locus, therefore the probability of the
whole phenotype was the product of the probabilities of the phenotype at each
locus: pr(msgi) =∏L

l=1 pr(msgl
i).

Given the genotype hgsi (i.e. the phenotype and the phase), the contribu-
tion of each progeny was the sum, over all possible maternal chromosomes
(or, equivalently, over all possible paternal chromosome pcijk) transmitted
to the progeny, of the a priori probability pr(pcijk) of this chromosome (a
priori, i.e. given the sire information only) times the transmission probability
pr

(
tijk/pcijk, hgsi, f

)
of this maternal chromosome to the progeny.

Four different possible grandparental origins were defined for each marker
locus. Origins 1 and 2 were MGS chromosome 1 and 2, respectively, given
MGS was heterozygous for this marker; origin 3 was any of MGS chromo-
somes 1 or 2, given MGS was homozygous for this marker; and origin 4
was MGD origin. To compute this probability pr

(
tijk/pcijk, hgsi, f

)
, tijk was

conditioned with these origins:

pr
(
tijk/pcijk, hgsi, f

) =
4L∑

o=1

pr (o) ∗ pr
(
tijk/o, pcijk, hgsi, f

)
. (8)

The probability of a combination of different origins, pr(o), regardless of the
different alleles, was obtained as the product pr(o) = π1 ·π2 of 2 probabilities:
the probability π1 that the grandparent transmitted the combination o, and the
probability π2 that the dam transmitted the combination of origins received by
the progeny, given she received o. The probability π1 that the MGD transmitted
origin 4 was trivial and equal to 1. The probability π1 that the MGS transmitted
a given combination o of origins 1 and 2 was obtained by considering the suc-
cessive couples of markers informative for MGS i: π1 = 0.5

∏L
l=2 p(ol+1/ol),

with p(ol+1/ol) = 1 − r(l, l + 1) if ol = ol+1 and p(ol+1/ol) = r(l, l + 1)
otherwise. π2 was computed in a similar way, by differentiating origins 4 and
non-4. π2 = 0.5

∏L
l=2 p(ol+1/ol), with p(ol+1/ol) = 1 − r(l, l + 1) if ol and

ol+1 were both 4 or both non-4, and p(ol+1/ol) = r(l, l+ 1) otherwise.
Finally, the last term pr

(
tijk/o, pcijk, hgsi, f

)
was obtained by the product of

the transmission probabilities at each locus, as the linkage between locus was
already accounted for in pr(o):

pr
(
tijk/o, pcijk, hgsi, f

) =
L∏

l=1

pr
(
tl
ijk/o

l, pcl
ijk, hgsl

i, f l
)

.

And pr
(
tl
ijk/o

l, pcl
ijk, hgsl

i, f l
)

is shown in Table III.
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Table III. Probability of transmission of the maternal allele A of marker l to the
progeny, given its grandparental origin ol, the MGS genotype hgsl

i = (hgsl,1
i , hgsl,2

i ),
and allelic frequencies f in the MGD population.

ol hgsl,1
i hgsl,2

i pr
(

tl
ijk/o

l, pcl
ijk, hgsl

i, fl
)

4 f l (A)

1, 2, or 3 ∀B 6= A ∀C 6= A 0

1 or 2 A A 0

3 A B 0

3 A A 1

1 A ∀B 6= A 1

1 ∀B 6= A A 0

2 A ∀B 6= A 0

2 ∀B 6= A A 1

Origins ol 1 and 2 were MGS chromosome 1 and 2, respectively, given
MGS was heterozygous for this marker; origin 3 was any of MGS
chromosomes 1 or 2, given MGS was homozygous for this marker; and
origin 4 was MGD origin.

The most likely MGS genotype was the genotype hĝsi such that

hĝsi = Arg maxhgsi

×

pr (mgsi)

1

2Lhi−1

∏

j

∑

k

pr
(
pcijk

) 4L∑

o=1

pr (o) pr
(
tijk/o, pcijk, hgsi, f

)

 .

(9)

Subsequently in this paper, only the most likely MGS genotype was retained
and considered as the true one.

2.5. Probability of origin of the maternal chromosomal segment
of the progeny at location x

A similar approach has been proposed by Coppieters et al. [4]. Three
chromosomal origins were considered, the first and the second chromosomes
of the MGS (origins q = 1 and 2), with an equal a priori probability of 0.25,
and the MGD (origin q = 3), with an a priori probability of 0.5. The objective
was to increase one of these probabilities to one, and to decrease the two others
to zero, by using the marker information.

Let us denote pr
(
ex

ij = q/pcijk, hgsi, f
)

the probability that the chromosomal
segment at location x has origin q (q = 1, 2, or 3) given the marker information,
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the genotype of the MGS and the marker allele frequencies in the MGD
population.

Only the most likely maternal chromosome transmitted to the progeny was
accounted for. However, this chromosome was more accurately defined than in
formula (4) by using the information of MGS genotypes and allele frequencies
in the MGD population, in addition to the sire genotypes. The maternal
chromosome transmitted to the progeny was assumed to be known and was
defined by

t̂ij = Arg maxpcijk


pr

(
pcijk

) 4L∑

o=1

pr (o) ∗ pr
(
tijk/o, pcijk, hgsi, f

)

 .

As in 2.4, we considered the same four different possible origins (o) and

pr
(
ex

ij = q/hgsi, tij, f
) =

4L∑

o=1

pr
(
o/hgsi, tij, f

)
pr

(
ex

ij = q/o
)

. (10)

According to Bayes theorem,

pr
(
o/hgsi, tij, f

) = pr
(
tij/o, hgsi, f

) ∗ pr (o)
∑4L

o=1 pr
(
tij/o, hgsi, f

) ∗ pr (o)
,

which terms were already computed in 2.4.
The last term to develop is pr

(
ex

ij = q/o
)
. As in 1.4, this probability was

computed as the product of the probability π1 that the grandparent transmitted
segment q to the dam with the probability π2 that the dam transmitted segment q
to the progeny. The probability that the MGD transmitted a segment of origin
q = 4 was 1. The probability that the MGS transmitted a segment of origin 1
or 2 was deducted from the nearest flanking informative markers ll et lr, in a
similar way as in Table I. Obviously, when only one marker was informative
(say ll), π1 reduced to r(ll, x) or 1 − r(ll, x), and to 0.5 when no marker was
informative.

π2 was obtained in a similar way, but the two nearest flanking markers were
considered, and not only the two nearest informative ones. A recombination
was supposed to occur when the flanking marker allele origins were 4 and
non-4 (1, 2, or 3).

With such a method, pr
(
ex

ij = q/pcijk, hgsi, f
)

could be computed at any
point x of the genome. As for sires, the MGS information content was
measured by

Ix =

∑

i

ni∑

j=1

[
pr

(
ex

ij = 1/tij, hgsi, f
)− pr

(
ex

ij = 2/tij, hgsi, f
)]2

∑

i

ni

· (11)
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Without distorsion of segregation in the dam population, this criterion theoret-
ically varies from 0 to 0.5, as half the chromosomal segments originate from
the MGD population.

2.6. QTL detection by regression

The linear model used in the daughter design was easily extended to take
into account maternal information, as follows:

yijk = µi + νj +
(

2pr
(
dx

ijk = 1/hsi,Mi

)− 1
)αx

i

2

+
(

pr
(

ex
ijk = 1/tij, hgsi, f̂

)
− pr

(
ex

ijk = 2/tij, hgsi, f̂
))

αx
j

2

+ pr
(

ex
ijk = 3/tij, hgsi, f̂

)
βx

j + εx
ijk (12)

where νj was the polygenic effect of MGS j, αx
j was the within-MGS substitution

effect of the QTL at location x, βx
j was the average QTL effect transmitted by

the MGD mated to MGS j, and the other terms were the same as in formula (3).
It is noteworthy that QTL could be detected in the MGD population, even when
MGS are homozygous, provided that the average MGD QTL effect differs from
the MGS QTL effect.

2.7. Signification test

Because MGS are usually not nested within-sire, permutation tests [3] cannot
easily be applied. The empirical distribution of test statistics under H0 was
obtained alternatively by simulation. Phenotypes were simulated under H0, as
the sum of the randomly sampled effects of the sire, the MGS and the residual,
and, optionally, with a paternal QTL effect, but without any maternal QTL
effect. Different tests could be considered to detect QTL specifically in sires,
MGS, or MGD populations, or in the overall design.

3. MEASURE OF THE EFFICIENCY OF THE METHOD

The efficiency of the method was assessed by simulation, in a first step by
measuring the quality of the MGS phenotype and genotype reconstruction, and
in a second step by measuring the power of QTL detection in the MGS and
MGD populations.

The simulated design included 1 000 progeny distributed in 10 sire families
of size 100. The heritability of the trait was assumed to be 0.25. Sires and
progeny were genotyped for 3, 5, 6, or 9 markers evenly spaced over a 100 cM
long chromosome (i.e. with 50, 25, 20, or 12.5 cM intervals). Each marker had
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5 alleles with equal frequencies 0.2. The number of MGS was assumed to be 5,
10, 20, or 50, corresponding to family size of 200, 100, 50, and 20 respectively.
Sixteen sets of parameters were defined by combining the number of markers
with the number of MGS. Factors sire and MGS were orthogonal. Markers and
QTL were assumed to be in linkage equilibrium in the sire, MGS and MGD
populations.

To estimate the quality of phenotype and genotype reconstruction, 100
replicates for each of the 16 sets of parameters were simulated. According
to the number of MGS per simulation, the results were based on 1 500 to
45 000 phenotype reconstructions and 500 to 5000 genotype reconstructions. A
phenotype was classified as correct if both inferred alleles were those simulated.
Only chromosomes with a correct phenotype reconstruction for all markers
were used to measure the efficiency of the phase reconstruction, in order to
specifically measure the efficiency of this step.

To estimate the power of QTL detection, the H1 hypothesis was simulated
with one biallelic QTL at location x = 35 cM with an additive effect. The
allele frequencies were equal to 0.5. The substitution effect was assumed to
be 0.5, 0.7, or 1 phenotypic standard deviation. The test distribution under
H0 was estimated from 10 000 replicates for each of the 16 sets of parameters.
Under H1, 100 replicates were simulated for each of the 48 sets of parameters
(defined by combining the number of markers, the number of MGS and the QTL
effect). The detection power was estimated by the proportion of test values
under H1 exceeding the 95% percentile of the corresponding H0 empirical
distribution.

Several tests could be defined, based on any combination of sire, MGS,
and MGD estimated effects. In QTL detection, the overall test combining
all information is the best. In this simulation study to estimate the detection
power, the statistical test used was based on MGS and MGD QTL contributions
only.

4. APPLICATION TO THE FRENCH GRANDDAUGHTER DESIGN
IN DAIRY CATTLE

A GDD design has been carried out in France [2]. It included 1 548 artificial
insemination bulls distributed in 14 sire families, genotyped for 169 markers,
and evaluated for up to 25 traits (milk production and composition, type,
fertility, mastitis resistance) on the basis of their daughters information. The
14 largest MGS families were selected and included 939 grandsons. The
MGS family size ranged from 24 to 206. The present method was applied to
this subset for the 29 autosomal chromosomes and for the 17 traits with the
most complete information. Empirical thresholds were obtained by simulating
10 000 H0 replicates per chromosome.
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Table IV. Percentage of correct phenotype reconstruction for each MGS marker
(100 replicates, 1 500 to 45 000 results per set of parameters).

MGS family size Distance between markers (cM)
50 25 20 12.5

200 95.5 99.3 99.9 99.9
100 89.8 97.4 99.2 99.9
50 82.1 94.2 95.8 98.8
20 70.0 81.2 86.5 93.5

Table V. Percentage of correct MGS marker phase reconstruction (100 replicates, 500
to 5 000 results per set of parameters).

MGS family size Distance between markers (cM)
50 25 20 12.5

200 99.9 100.0 99.9 100.0
100 99.8 99.9 99.8 99.8
50 96.7 98.3 98.6 99.0
20 76.7 82.0 84.5 89.6

5. RESULTS OF THE SIMULATION STUDY

5.1. Efficiency of phenotype and genotype reconstruction

Table IV presents the results of the phenotype reconstruction. The efficiency
was found to be very high when the number of grandprogeny was high or when
the marker map was dense. With less than 50 descendants, the reconstruction
was more hazardous. It is worth noting that very high correct reconstruction
rates have to be required here, because each chromosome has several markers
and therefore the probability of the correct reconstruction of all phenotypes
of the whole chromosome is the product of the probabilities for each marker.
Moreover, this step is the first one and would hamper the next steps if it is not
correct.

Table V presents the results of the phase reconstruction, assuming that
the phenotypes are correct. The probability of correct reconstruction was
of course lower than for sires. Mangin et al. [6] reported a probability of
correct reconstruction of sire phase of 95% with 5 markers, 4 alleles per
marker, and 20 progeny, against 82% in the present study for MGS with
rather similar assumptions. But the loss of efficiency was close to expected:
with 50 grandprogeny, i.e. 25 grandprogeny effectively contributing to the
determination of MGS phase, the probability reached 98%. As for phenotype
reconstruction, the efficiency was found to be very high when the number of
grandprogeny was greater than 50. The effect of map density was more limited,
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Table VI. Percentage of correct MGS marker phenotype and genotype reconstruction
(100 replicates, 500 to 5 000 chromosome results per set of parameters).

MGS family size Distance between markers (cM)
50 25 20 12.5

200 87.1 96.5 99.3 99.5
100 72.4 87.7 95.2 99.4
50 53.6 72.9 76.4 89.1
20 26.3 29.0 35.3 48.8

probably because when markers are more spaced, the number of markers and,
therefore, the number of possible phases, is much lower.

When MGS were not genotyped and when both steps were combined
(Tab. VI), reconstruction results were excellent for large families and dense
maps but declined, with a cumulative effect, with family size and sparsity of
the map.

5.2. Power of QTL detection with maternal information

Results of detection power are presented in Table VII. They clearly show
that the key factor was the family size and that families with more than 50
descendants were the most informative. Detection power was of course much
lower with the maternal information than with the paternal information. For
instance, with 20 MGS with 50 descendants, the detection power was 26% for
a QTL with a substitution effect of 0.5, whereas the corresponding value with
sire information, obtained with 20 sires and 50 progeny per sire, was 60% (data
not shown). But when the comparison was made with the same effectively
contributing family size, i.e. with MGS sires families twice as large as sire
families, results were more similar (52%), showing that only little information
was lost with large families.

6. ILLUSTRATION WITH THE FRENCH GDD IN DAIRY CATTLE

The average information content over the 29 chromosomes, as defined in
(2) and (11), reached 0.55 for paternal chromosomes and 0.18 for maternal
chromosomes. This latter value could appear rather low, when compared to its
maximum theoretical value (0.5). Figure 1 illustrates a situation (chromosome
6, x = 10 cM) corresponding to an information content of 0.22 and shows
that such an apparently low value corresponds, however, to reasonably well
estimated transmission probabilities.

The a priori probabilities are 0.25, 0.25, and 0.5 for q = 1, q = 2, and
q = 3, respectively. On the figure, the frequency around this point was
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Table VII. QTL Detection power with maternal information according to QTL substi-
tution effect, MGS family size, and map density (chromosomewise type 1 error= 5%,
10 000 replicates under H0, 100 replicates under H1 per set of parameters).

Substitution effect
(phenotypic standard

deviation)

MGS family
size

Distance between markers (cM)

50 25 20 12.5
0.5 200 0.25 0.42 0.49 0.70

100 0.12 0.24 0.40 0.43
50 0.13 0.15 0.26 0.26
20 0.06 0.08 0.10 0.12

0.7 200 0.50 0.79 0.85 0.88
100 0.40 0.61 0.73 0.87
50 0.31 0.43 0.52 0.58
20 0.08 0.13 0.14 0.19

1.0 200 0.87 0.99 1.00 0.99
100 0.76 0.97 0.98 0.98
50 0.47 0.80 0.93 0.95
20 0.20 0.30 0.34 0.40

Figure 1. Distribution of the probabilities of origin of the maternal chromosomal
segment for 939 progeny at location 10 cM on chromosome 6 (information content =
0.22).
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strongly reduced, with about 10% remaining individuals, and it was replaced
by 5 other peaks: pr(q = 1) < 0.1 and pr(q = 2) < 0.1, corresponding to
the GDD origins, and gathering 33% of the individuals; pr(q = 1) > 0.8 and
pr(q = 2) < 0.2, corresponding to the MGS chromosome 1 origin, with 15%
of the individuals; pr(q = 1) < 0.2 and pr(q = 2) > 0.8, corresponding
to the MGS chromosome 2 origin, with 20% of the individuals; pr(q = 1)
and pr(q = 2) close to 0.5, corresponding to a MGS origin, but without
differentiating chromosome 1 from chromosome 2 origins, with 10% of the
individuals. The last concentration (pr(q = 1) = 0.6 and pr(q = 2) < 0.1)
corresponded to an uncertainty between the MGS chromosome 1 origin and the
MGD origin, whereas MGS chromosome 2 origin was excluded. Therefore, in
spite of an apparently low information content (0.22), the grandparental origin
(MGS or MGD) was known in 80% of cases, and when a MGS origin was
determined, the chromosomal origin was deducted in more than 80% of the
cases. This misleading behaviour could be attributed to the definition of the
information content criterion, based on a sum of squares.

Table VIII presents the QTL detected, with the maternal information only,
with a genomewise significance level of 10%. Note that this 10% genome-
wise threshold corresponds to a 0.34% chromosomewise significance level for
29 chromosomes. Twenty-two significant (or almost significant) results were
tabulated, out of them 8 and 5 were also genomewise and chromosomewise
significant, respectively, with within-sire analysis, while 9 were not detected at
all with the sire information only.

Table IX presents 8 other QTL chromosomewise significant when only the
paternal or the maternal information was used, but which became genomewise
significant when both kinds of information were combined.

7. DISCUSSION AND CONCLUSION

In non-prolific outbred populations, QTL detection is usually carried out
within-sire families and all the maternal meioses, i.e. half the potential inform-
ation, are lost. Although the present approach does not retrieve such an
amount of information, it takes advantage of the relationship between dams,
without increasing the genotyping work. A similar method was already
proposed by Coppieters et al. [4] but it was limited to the MGS already
present as sires, i.e. already genotyped and with known phases. Moreover,
these authors did not account for the grandmaternal origins and, therefore,
lost some information. The goal of their approach was primarily to confirm
results obtained in specific families with independent data already present in the
same design. Our approach is more general and makes it possible to include
new families, provided that their size is sufficiently large. In the case sires
are also MGS, progeny and grandprogeny information are easily merged by
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Table VIII. Genomewise significant QTL detected with the maternal information.

Trait Chromosome Chromosome wise
p-value (%),

maternal information

Chromosome wise
p-value (%), paternal

information
Milk 26 0.23 2.15
Fat 14 0.35 0.11

19 0.09 0.13
Fat content 12 0.02

14 < 0.01 < 0.01
Protein content 14 < 0.01 < 0.01
Cell count 3 0.09

15 0.06 0.05
24 0.14
25 0.19

Ligament 1 0.14
28 0.37 0.27

Udder depth 11 0.12 3.18
Udder balance 18 0.13 0.05

25 0.33
Teat distance 17 0.37 1.97

24 0.18
28 0.06 0.64

Teat placement 11 0.08
28 0.02 0.04

Height at sacrum 26 0.23
Chest depth 11 0.34 2.74

Table IX. Previously putative QTL confirmed by the maternal information.

Trait Chromosome Chromosome wise
p-value (%),

maternal information
939 sons

Chromosome wise
p-value (%), paternal

information
1 548 sons

Fat content 22 1.50 2.31
24 4.98 4.03

Protein content 3 1.18 0.98
Ligament 10 0.54 1.77
Udder depth 20 4.04 1.01
Udder balance 14 0.75 3.01
Teat distance 28 0.97 0.64
Teat placement 21 2.59 4.33
Rump width 29 4.48 2.35
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estimating only one QTL effect in the linear model. This approach is rather
specific to (grand)daughter designs and it significantly increases programming
complexity in software development, but it is an efficient alternative to MCMC
methods [1] in term of computing time requirements. Once implemented, it
is easy to apply to the analysis of a complete design, with many traits and a
genome scan.

In the present approach, only the most likely MGS marker phase is finally
retained, which greatly simplifies the QTL detection step by linear regression,
whereas the uncertainty about maternal marker allele transmission and MGS
marker phenotype is accounted for in the first steps. This approach is a better
guarantee of correct MGS phenotype and phase reconstruction, particularly
when markers are little informative.

Because MGS QTL are compared with MGD QTL, all MGS are informative,
even if they are homozygous for the QTL. Moreover, assuming that the expected
MGD QTL effects are the same across MGS families, this provides a basis
for MGS comparisons. This means that the absolute values of the QTL
genotype carried by MGS could be predicted, regardless of their homo- or
heterozygous status, and that MGS homozygous for favourable QTL alleles
could be distinguished from MGS homozygous for unfavourable QTL alleles.
With the additional assumption that the QTL is biallelic, allele frequencies
could be estimated and the genotype of each homozygous MGS could be
predicted, with only a minor modification of the QTL detection step. This
frequency information is extremely valuable to assess the potential genetic
gain due to one given QTL and achievable by marker-assisted selection.

The present method, however, is limited to large MGS families. The analysis
of families with less than 50 descendants has limited power, mainly because
many errors could arise and accumulate during the successive steps of the
procedure. The efficiency of the phenotype reconstruction is also affected by
the marker informativity and also by the number of MGS. With few MGS and
biallelic markers, the efficiency of the phenotype reconstruction is a bit lower,
because the likelihood (5) is quite flat. In the extreme situation, when all MGS
have the same phenotype, the likelihood could be bimodal and two possible
phenotypes are nearly equally likely. In large designs, however, this situation
is rarely encountered and is less limiting than low family size.

Given the MGS and MGD, the dams were assumed to be unselected. Note
that this assumption is always made when only sire information is used. This
assumption is probably not critical in daughter designs, because it is likely to
be fulfilled. But it is clearly not the case in a granddaughter design, because
only the best females are selected as dam of sires. The effect of this selection
process on the efficiency of the method is not known, but it could be important
if this selection generates distortion of segregation, and favours or eliminates
some QTL alleles which are analysed subsequently.
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The definition of statistical tests is also a critical point. The appealing
and popular permutation method [3] to estimate rejection threshold could be
difficult to apply when MGS are not nested within-sire, because the sire by
MGS cell could be very small. Thresholds should consequently be computed
by simulation, which is known to be a bit less conservative [8] than permutation
tests.

In the French granddaughter design, this method made it possible to analyse
14 additional bulls and this new information was very valuable, in marker-
assisted selection as well as in the fine mapping of some QTL by providing
new informative families. With this approach, 16 new QTL were detected,
whereas they were either non detected or not significant enough with the
paternal information only.
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